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A novel boundary-type meshless method for modeling geofluid flow in heterogeneous geological media was developed. The
numerical solutions of geofluid flow are approximated by a set of particular solutions of the subsurface flow equation which are
expressed in terms of sources located outside the domain of the problem. This pioneering study is based on the collocation Trefftz
method and provides a promising solution which integrates the T-Trefftz method and F-Trefttz method. To deal with the subsurface
flow problems of heterogeneous geological media, the domain decomposition method was adopted so that flux conservation and
the continuity of pressure potential at the interface between two consecutive layers can be considered in the numerical model.
The validity of the model is established for a number of test problems. Application examples of subsurface flow problems with
free surface in homogenous and layered heterogeneous geological media were also carried out. Numerical results demonstrate that
the proposed method is highly accurate and computationally efficient. The results also reveal that it has great numerical stability
for solving subsurface flow with nonlinear free surface in layered heterogeneous geological media even with large contrasts in the

hydraulic conductivity.

1. Introduction

Numerical approaches to the simulation of various sub-
surface flow phenomena using the mesh-based methods
such as the finite difference method or the finite element
method are well documented in the past [1-5]. Differing from
conventional mesh-based methods, the meshless method has
the advantages that it does not need the mesh generation.
The meshless method has attracted considerable attention
in recent years because of its flexibility in solving practical
problems involving complex geometry in subsurface flow
problems [6-9]. Chen et al. [10] conducted a comprehensive
review of mesh-free methods and addressed that mesh-free
methods have emerged into a new class of computational
methods with considerable success. Subsurface flow prob-
lems are usually governed by second-order partial differential
equations. Problems involving regions of irregular geometry
are generally intractable analytically. For such problems,
the use of numerical methods, especially the boundary-
type meshless method, to obtain approximate solutions is
advantageous.

Several meshless methods have been reported, such as
the Trefftz method [11-16], the method of fundamental
solutions [7, 17-19], the element-free Galerkin method [20],
the reproducing kernel particle method [21, 22], the meshless
local boundary integral equation method [23, 24], and the
meshless local Petrov-Galerkin approach [25]. Proposed by
Trefftz in 1926 [16], the Trefttz method is probably one
of the most popular boundary-type meshless methods for
solving boundary-value problems where approximate solu-
tions are expressed as a linear combination of functions
automatically satisfying governing equations. According to
Kita and Kamiya [12], Trefttz methods are classified as either
direct or indirect formulations. Unknown coefficients are
determined by matching boundary conditions. Li et al. [14]
provided a comprehensive comparison of the Trefftz method,
collocation, and other boundary methods, concluding that
the collocation Trefftz method (CTM) is the simplest algo-
rithm and provides the most accurate solutions with optimal
numerical stability.

To solve subsurface flow problems with the layered soil
in heterogeneous porous media, the domain decomposition
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method (DDM) [26] is adopted because the DDM is natural
from the physics of the problem to deal with different
values of hydraulic conductivity in subdomains. The DDM
can be divided into overlapping domain decomposition and
nonoverlapping domain decomposition methods. In overlap-
ping domain decomposition methods, the subdomains over-
lap by more than the interface. In nonoverlapping methods,
the subdomains intersect only on their interface. One may
need to use the DDM which decomposes the problem domain
into several simply connected subdomains and to use the
numerical method in each one. In this study, we adopted the
nonoverlapping method to deal with the seepage problems
of layered soil profiles. The problems on the subdomains are
independent, which makes the DDM suitable for describing
the layered soil in heterogeneous porous media.

The subsurface flow problem with a free surface is a
nonlinear problem in which nonlinearities arise from the
nonlinear boundary characteristics [27]. Such nonlineari-
ties are handled in the numerical modeling using iterative
schemes [28]. Techniques for solving problems with nonlin-
ear boundary conditions have been investigated. Typically,
the methods, such as the Picard method or Newton’s method,
are iterative in that they approach the solution through a
series of steps. Since the computation of the subsurface flow
problem with a free surface has to be solved iteratively, the
location of the boundary collocation points and the source
points must be updated simultaneously with the moving
boundary. Solving subsurface flow with a nonlinear free
surface in layered heterogeneous soil is generally much more
challenging. In addition, the convergence problems often
arise from nonlinear phenomena. A previous study [28] indi-
cates that the Picard scheme is a simple and effective method
for the solution of nonlinear and saturated groundwater flow
problems. Therefore, we adopted the Picard scheme to find
the solution of the nonlinear free surface.

In this paper, we proposed a novel boundary-type mesh-
less method. This pioneering study is based on the collocation
Trefttz method and provides a promising solution which
integrates the T-Trefftz method and F-Trefttz method for
constructing its basis function using one of the particular
solutions which satisfies the governing equation and allows
many source points outside the domain of interest. To the best
of the authors’ knowledge, the pioneering work has not been
reported in previous studies and requires further research.
Two important phenomena in subsurface flow modeling were
explored in this study using the proposed method. We first
adopted the domain decomposition method integrated with
the proposed boundary-type meshless method to deal with
the subsurface flow problems of heterogeneous geological
media. The flux conservation and the continuity of pressure
potential at the interface between two consecutive layers can
be considered in the numerical model. Then, we attempted to
utilize the proposed method to solve the geofluid flow with
free surface in heterogeneous geological media.

The validity of the model is established for a number
of test problems, including the investigation of the basis
function using two possible particular solutions and the
comparison of the numerical solutions using different par-
ticular solutions and the method of fundamental solutions.
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Application examples of subsurface flow problems with free
surface were also carried out.

2. Solutions to the Subsurface Flow Equation
in Cylindrical Coordinates

Consider a three-dimensional domain Q enclosed by a
boundary I'. The steady-state subsurface flow equation can be
expressed as

V’h=0 inQ, ey
with
h=f onlIp,
(2)
h, = oh on Ty,
on

where n denotes the outward normal direction, I';, denotes
the boundary where the Dirichlet boundary condition is
given, and I’y denotes the boundary where the Neumann
boundary condition is given. Equation (1) is also known as
the Laplace equation. In this study, we adopted the cylindrical
coordinate system. In the cylindrical coordinate system, the
Laplace governing equation can be written as

az_h+l%+iaz_h+az_h—0 (3)
o> pdp p2oo> 0zF

where p, 0, and z are the radius, polar angle, and altitude
in the three-dimensional cylindrical coordinate system. h
is the unknown function to be solved. Considering a two-
dimensional domain in the polar coordinate, the Laplace
governing equation can be written as

Ph 10k 1%

o0 " pop T proe W
where p and 6 are the radius and polar angle in the
two-dimensional polar coordinate system. For the Laplace
equation, the particular solutions can be obtained using the
method of separation of variables. The particular solutions of
(4) include the following basis functions:

Llnp, p” cos (v0), p" sin (v9), p~" cos (v0), p " sin (v9),
v=12,3,....

The definition of the particular solution in this study is
in a wide sense which is to satisfy the homogenous or
the nonhomogenous differential equations with or without
part of boundary conditions. If we adopt the solution of a
boundary value problem and enforce it to exactly satisfy the
partial differential equation with the boundary conditions at
a set of points, this leads to the CTM.

The CTM belongs to the boundary-type meshless method
which can be categorized into the T-Trefftz method and
F-Trefttz method. The T-Trefttz method introduces the T-
complete functions where the solutions can be expressed as a
linear combination of the T-complete functions automatically



Geofluids

ve

@ Source point

(a) A simply connected domain

@ Source point

(b) An infinite domain with a cavity

VO

@ Source point

(c) A doubly connected domain

@ Source point

(d) A multiply connected domain

FIGURE 1: lllustration of four different types of domain in the CTM.

satisfying governing equations. On the other hand, the F-
Trefftz method constructs its basis function space by allowing
many source points outside the domain of interest. The
solutions are approximated by a set of fundamental solutions
which are expressed in terms of sources located outside the
domain of the problem. The T-Trefftz method and the F-
Trefttz method both required the evaluation of a coefficient
for each term in the series. The evaluation of coeflicients
may be obtained by solving the unknown coeflicients in the
linear combination of the solutions which are accomplished
by collocation imposing the boundary condition at a finite
number of points.

The CTM begins with the consideration of T-complete
functions. For indirect Trefttz formulation, the approximated
solution at the boundary collocation point can be written

as a linear combination of the basis functions. For a simply
connected domain or infinite domain with a cavity, as
illustrated in Figures 1(a) and 1(b), one usually locates the
source point inside the domain or the cavity and the number
of source points is only one for in the CTM [29].

For the doubly and multiply connected domains with
genus greater than one, as illustrated in Figures 1(c) and 1(d),
one may locate many source points in the domain. Usually,
at least one source point inside the cavity is required. If we
considered a simply connected domain, the T-complete basis
functions can be expressed as

M
h(x) =~ ) bT,;(x), (6)
i=1
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where b; = [Ag A; B] and T;(x) =

[1 pi cos(if) pi sin(i@)]T. x € Q and M is the order of
the T-complete function for approximating the solution. For
an infinite domain with a cavity as illustrated in Figure 1(b),
one usually locates the source point inside the cavity, and the
T-complete functions (negative T-complete set) include

T, (x) = [lnp p ' cos (i) p~'sin (i@)]T. (7)

The accuracy of the solution for the CTM depends on the
order of the basis functions. Usually, one may need to increase
the M value to obtain better accuracy. However, the ill-posed
behavior also grows up with the M value.

On the other hand, there is another type of the Trefttz
method, namely, the F-Trefftz method, or the so-called
method of the fundamental solutions (MFS) [14]. Instead
of using only one source point and increasing the order of
basis function, the MFS allows many source points outside
the domain of interest. The solutions are approximated by a
set of fundamental solutions which are expressed in terms of
sources located outside the domain of the problem. Figures
2(a), 2(b), 2(c), and 2(d) illustrate the collocation of the
boundary and the source points for a simply connected
domain, an infinite domain with a cavity, doubly connected
domains, and a multiply connected domain, respectively.

The unknown coefficients in the linear combination
of the fundamental solutions which are accomplished by
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collocation imposing the boundary condition at a finite
number of points can then be solved. Due to its singular
free and meshless merits, the indirect type F-Trefftz method
is commonly used. An approximation solution of the two-
dimensional Laplace equation using the MFS can also be
obtained as

N
h(x) = Z c;F (x, yj) , (8)
=1
where x € Qandy; ¢ Q and N is the number of source
points which are placed outside the domain. The fundamental
solution of Laplace equation can be expressed as

1
F (x,yj) =5 In (pj). 9)
p; is defined as the distance between the boundary point and
source point, and p; = |x — y;|. Then we selected a finite

number of collocation points over the boundary and imposed
the boundary condition at boundary collocation points to
determine the coefficients of b; and c; for the CTM and the
MES, respectively.

For the conventional Trefttz method, the number of
source points is only one. Theoretically, one may increase the
accuracy by using a larger order of the basis functions [30].
Instead of using only one source point and increasing the
order of basis functions, the MFS allows many source points
but uses only one basis function, that is, the fundamental
solution of the differential operator. One may be interested to
investigate a method similar to the MFS which allows many
source points but uses other basis functions.

In the following, we proposed a novel boundary-type
meshless method. This pioneering study is based on the
collocation Trefftz method and provides a promising solution
which integrates the T-Trefttz method and F-Trefttz method
for constructing its basis function using one of the particular
solutions which satisfies the governing equation and allows
many source points outside the domain of interest. Differing
from the CTM and the MFS, the numerical solutions of
the proposed method are approximated by a set of basis
functions which are expressed in terms of source points
located outside the domain. An approximation solution of the
two-dimensional steady-state subsurface flow equation using
the proposed method can be obtained as

o)
h(x) = Zaij (x,yj), (10)
I=
where x € Q is the spatial coordinate which is collocated on
the boundary, y ¢ Q is the source point, and O is the number
of source points which are placed outside the domain. The
unknown coeflicients can be expressed as a; = [a; b;].
P;(x,y;) is the particular solution of Laplace equation. In this
study, two different particular solutions of Laplace equation
were adopted as the basis functions. Two possible particular
solutions of Laplace equation can be expressed as

Py (xy,) = [ costy s
)
P, (x,yj) = [pj_z cos 20, pj"2 sin 29j]T.

The determination of the unknown coefficients for the pro-
posed method is exactly the same with those in the MFS
as described in previous section. We first selected a finite
number of collocation points x; over the boundary such that

Mo

aij (Xk’yj) =g(xk), k=1,...,M, (12)
1

.
Il

where a; = [a; b;] are the constant coefficients to be solved,
and g(x;) is the boundary condition imposed at boundary
collocation points. Considering the boundary conditions, we
have

Bh(x) = g(x), (13)
where B = 1 represents the Dirichlet boundary condition;
B = 0/0n represents the Neumann boundary condition.

Applying Dirichlet and Neumann boundary conditions, we
obtained

Mo

h(x) = a;P; (Xk’Yj) =g(x),

.
Il
—

(14)
oh(x;) Z 0 X = f(x
aﬂk ~j:1ajanpj( k’)j) f( k),

where j = 1,...,0 and x, € T. f(x;) is the Neumann
boundary condition imposed at boundary collocation points.
The source points are on the artificial fictitious boundary,
which are placed outside the domain to avoid the singularity
of the solution at origin. The artificial fictitious boundary
is often chosen as a circle with a radius. However, the
position of source and collocation points may affect the
accuracy. In order to determine the unknowns a, collocating
the numerical expansion of (12) at boundary conditions
of (14) at M boundary collocation points yields the following
equations:

Aa =b, (15)

where A is a matrix which takes values of the solutions at the
corresponding M collocation points and N source points, € =
[a,,a,,...,a,]" is a vector of unknown coefficients, and b is
a vector of function values at collocation points.

3. Validation of the Proposed Method

3.1. Investigation of the Basis Function. In this example,
we adopted two possible particular solutions of Laplace
equation as the basis functions. They are P1; and P2; where

- -1 . T
Pli(x,y;) = [plcosej p1s1n9j] and P2;(x,y;) =

[p_z cos 20, p 2sin 20]-]T, respectively. In this example, we
verified the accuracy of the proposed method and also
compared the numerical solution with the MFS. To compare
the results with the analytical solution, we considered the
subsurface flow problem with an exact solution.

For a two-dimensional simply connected domain Q
enclosed by a boundary, the subsurface flow equation can
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FIGURE 3: The collocation of boundary and source points.

be expressed as Laplace governing equation which can be
expressed as

V’h=0 inQ. (16)
The two-dimensional object boundary under consideration
is defined as

I={(x,y) | x=p(@)cosh,y=p@)sinb}, (17)

where p(e) _ Zt(e(sinesinZG)2 + e(cos@cosZG)z)) 0<0 <2
The analytical solution can be found as

h=e cosy+e"siny. (18)

The Dirichlet boundary condition is imposed on the amoeba-
like boundary by using the analytical solution as shown in (18)
for the problem.

Figure 3 shows the collocation point for the boundary
and the source points. To obtain a promising result of the
location of the source points for the proposed method in this
study, a sensitivity study was first carried out. An algorithm
similar to the study conducted by Chen et al. [31] was adopted
with scaling of the artificial boundary with the domain size.
Assuming the boundary collocation points can be described
as a known parametric representation as follows:

x; = 11 (cos O, sin6), k=1,...,M. (19)

The source points can also be described as a known paramet-
ric representation from the above equation:

Y; =1r; (cost,sinGj), j=1...,N, (20)

where 7 is the dilation parameter and is greater than one. 6,
and 0; are the angles of the discretization of the boundary
for boundary and source points, respectively. r; and r; are
the radiuses which represent the scale of the domain size
for boundary and source points, respectively. The sensitivity
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FIGURE 4: The accuracy of the maximum absolute error versus 7.

example under investigation is in a simply connected domain.
In this example, we investigated the accuracy by choosing
locations of the source points through different # values using
the MFS. Figure 4 shows that # = 4 could be the satisfactory
location of the source points.

Using # = 4, we conducted an example to clarify the
approximate number of boundary collocation and the source
points. For simplicity, we took the same number of the
boundary points. To examine the accuracy, we collocated
1074 uniformed distributed inner points inside the domain,
as shown in Figure 5. The maximum absolute error can then
be found by evaluating the absolute error for each inner point.

Figure 5 depicted the computed results of the maximum
absolute error versus the number of source points. It is
well known that the linear algebraic equation systems may
be ill-conditioned while the global basis functions were
adopted. To clarify this issue, we investigated the condition
number versus the number of source points. Figure 6 shows
that the relationship of the condition number versus the
number of source points for the proposed method and the
MES. For simplicity, we adopted the commercial program
MATLAB backslash operator to solve the linear algebraic
equation systems. It is found that the proposed method
remains relatively high accuracy compared to the MFS in this
example. The best accuracy can reach the order of 107 while
the number of source points is greater than 180. On the other
hand, the best accuracy of the MFS can reach only about 107
in the same example.

3.2. Comparison of the Numerical Results. Similar to the
previous example, we verified the accuracy of the proposed
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FIGURE 5: The accuracy of the maximum absolute error versus the
number of source points.
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FIGURE 6: The condition number versus the number of source
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method with the consideration of a complex star-like bound-
ary. For a two-dimensional simply connected domain
enclosed by a boundary, the subsurface flow equation can
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QO Inner point

FIGURE 7: The collocation of boundary and source points.

be expressed as Laplace governing equation which can be
expressed as
V’h=0 in Q. (21)

The two-dimensional object boundary under consideration
is defined as

I={(x,y) | x=p@O)cosh,y=p@®sin6},  (22)

where p(6) = 5(1 + (cos(46))%),0 < 0 < 271
The analytical solution can be found as

h = (sinh x + cosh x) (cos y + sin y). (23)

The Dirichlet boundary condition is imposed on the bound-
ary by using the analytical solution as shown in (23) for
the problem. Figure 7 shows the collocation point for the
boundary and the source points. A sensitivity study using the
MES was first carried out and # = 3 could be the satisfactory
location of the source points, as shown in Figure 8. Also,
to examine the accuracy, we collocated 3250 uniformed
distributed inner points inside the domain, as shown in
Figure 9. The maximum absolute error can then be found by
evaluating the absolute error for each inner point.

Figure 9 depicted the computed results of the maximum
absolute error versus the number of source points. Figure 10
shows the relationship of the condition number versus the
number of source points for the proposed method and the
MES. It is found that the proposed method remains relatively
high accuracy compared to the MFES in this example. The best
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FIGURE 9: The accuracy of the maximum absolute error versus the
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accuracy can reach the order of 10 while the number of
source points is greater than 150. On the other hand, the best
accuracy of the MFS can reach only about 107 in the same
example.
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4. Application of the Proposed Method

4.1. Modeling of Subsurface Flow with Free Surface. The first
application under investigation is a free surface seepage
problem of a rectangular dam as depicted in Figure 1.
The subsurface flow equation is the Laplace equation. The
example with the upstream hydraulic head is 24m, the
downstream hydraulic head is 4m, and the width of the
rectangular dam is 16 m. The boundary conditions includes
I, I,, I3, I, and I, as depicted in Figure 11. In T, and I, the
Dirichlet boundary conditions are given as

h=H, onl,

(24)

h=H, onli.
Based on the Bernoulli equation, we neglected the velocity
head and the total head or the potential can be written as

h:Y(x)+£, (25)
Y

where Y (x) is the elevation head, p is the pressure head, and
y is the unit weight of fluid. In I and I, the free surface
boundaries are given as overspecified boundary conditions as

g_h =0, h=Y(x) on[; and [,. (26)
n

In I, the no-flow Neumann boundary condition to simulate
the imperious boundary is given as

oh
Fw 0 onlj. (27)
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Since h = Y(x) is unknown a priori which needs to
be determined iteratively after the initial guess of the free
surface, the proposed method adopted to find the location of
free boundary is expressed in the following section.

The subsurface flow with a free surface is a nonlinear
problem in which nonlinearities arise from the nonlinear
boundary characteristics. Such nonlinearities are handled in
the numerical modeling using iterative schemes. Typically,
the methods, such as the Picard method or Newton’s method,
are iterative in that they approach the solution through a
series of steps. In this study, the Picard method is adopted.

There are 16 boundary collocation nodes uniformly dis-
tributed in the initial guess of the moving boundary with
the spacing of 1 m as shown in Figure 12. Figure 12 shows
the computed results using the proposed method. There
are 132 iterations to reach the stopping criterion using the
Picard scheme. The numerical solutions of free surface were
then compared with those obtained from Aitchison et al.
[32, 33]. The separation point is the intersection of the free
surface and the seepage face. The location of the separation
point computed by this study is 13.19m. It is found that
the computed results agree closely with those from other
methods.

4.2. Free Surface Seepage Flow through Layered Heterogeneous
Geological Media. The previous examples have demonstrated
that the proposed method can be used to deal with the
subsurface flow with a free surface. Since the appearance
of layered soil in heterogeneous geological media is much
more common than homogeneous soil in nature, we further
adopted the proposed method to deal with the subsurface
flow problems of layered heterogeneous geological media
using the DDM.
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FIGURE 12: Result comparison of the computed free surface for a
rectangular dam.

This example under investigation is a rectangular dam
in layered soil as depicted in Figure 13. We considered the
problem where the upstream hydraulic head is 10 m, the
downstream hydraulic head is 2m, and the height and the
width of the rectangular dam are 10 m and 5 m, respectively.
The boundary conditions including I}, I, ..., I}, are shown
in Figure 13. At Iy and I, the Dirichlet boundary conditions
are given as

h=10m onT;,
(28)
h=2m on I,

At T, Ty, I, and Iy, the free surface boundaries are given as
overspecified boundary conditions as

oh
— =0, h=Y(x) onI},T,,T;LL. (29)
on

At T, and I, the no-flow Neumann boundary condition to
simulate the imperious boundary is given as

% =0 only,T. (30)
To deal with the geofluid flow through layered heterogeneous
geological media, the domain decomposition method was
adopted. The solution continuity or compatibility between
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different subdomains was assured by remaining equal values
of the pressure potential and the flux at the interface between
subdomains. For instance, the free surface seepage flow
through layered heterogeneous geological media as at I,
and I, the flux conservation, and the continuity of pressure
potential at the interface between two consecutive layers have
to ensure the solution continuity. Accordingly, the following
additional boundary conditions must be given:

h|r2 = h|r7 at FZ, F7,
(31)
k, g—h = kz% at I, I.
n T, n T,

There are two soil layers in this example. The values of the
hydraulic conductivity for layer 1 and layer 2 are k; and k,,
respectively, and k; = 0.1k, and k; = 107 cm/s.

In this study, we adopted the nonoverlapping method to
deal with the subsurface flow problems of layered soil profiles.
The problems on the subdomains are independent, which
makes the DDM suitable for describing the layered soil in
heterogeneous porous media.

For the modeling of the layered soil, we split the domain
into smaller subdomains in which subdomains were inter-
sected only on the interface between soil layers, as shown in
Figure 13. For example, there is a problem with two soil layers
as shown in Figure 13. The hydraulic conductivities are k; and
k, for soil layer 1 and soil layer 2, respectively. The boundary
and source points were collocated in each subdomain. At
the interface, the boundary collocation points on left and

right sides coincide with each other. The proposed method
was then adopted to ensure that flux conservation and the
continuity of pressure potential at the interface between two
consecutive layers remain the same.

For the first subdomain, there are a total of 250 boundary
collocation nodes where 50 boundary collocation nodes are
uniformly distributed in the initial guess of the moving
boundary. For the second subdomain, there are also a total
of 250 boundary collocation nodes where 50 boundary
collocation nodes are uniformly distributed in the initial
guess of the moving boundary.

Figure 14 shows the computed results using the proposed
method. There are 14 iterations to reach the stopping criterion
using the Picard scheme. The numerical solutions of free sur-
face were then compared with those obtained from previous
studies [27, 34]. It is found that the computed results agree
well with those from other methods.

4.3. Modeling of Three-Dimensional Subsurface Flow
Problem. Because the basis function, Pi(x,y;) =

[Pj—z cos 20, pj_2 sin 20j]T, is also the particular solution
of the Laplace equation in three-dimensional cylindrical
coordinate system, it implies that the basis function proposed
in this study can also be used to solve the three-dimensional
subsurface flow problems. Accordingly, the last example
under investigation is a three-dimensional homogenous
isotropic steady-state subsurface flow problem. For a three-
dimensional simply connected domain Q enclosed by a



Geofluids

[e)} ~
| |
P> DO—T—¢

y (m)
T

aaa This study
¢9o Lacyand Prevost (1987)
+++ Wuetal. (2013)

FIGURE 14: Comparison of free surface for a rectangular dam in
layered heterogeneous geological media.

boundary as shown in Figure 15, the governing equation is
expressed as

V’h=0 inQ. (32)
The boundary is defined as
I={(x,y,2) | x=p(0)cosh, y =p(0)sinOsin¢,z
= p(0) sinO cos ¢}, o9
where p(0) = pleindsin20)? | p(cosbeos20)® g < 9 < 27 and 0 <

z<1.
The analytical solution of the problem is given as

h = xyz. (34)

The Dirichlet boundary condition is imposed on the bound-
ary by using the analytical solution as shown in (34) for
the problem. Figure 15 shows the boundary collocation and
the three-dimensional shape of the problem. A sensitivity
study was first carried out and # = 80 could be the satis-
factory location of the source points, as shown in Figure 16.
Also, to examine the accuracy, we collocated 889 uniformed
distributed inner points inside the domain. The maximum
absolute error can then be found by evaluating the absolute
error for each inner point.

Figure 17 depicted the computed results of the maximum
absolute error versus the number of source points. The best
accuracy of the proposed method can reach the order of 107
while the number of source points is greater than 350.

1

15
Y L 05 05

FIGURE 15: The boundary collocation points of three-dimensional
subsurface flow problem.
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FIGURE 16: The accuracy of the maximum absolute error versus #.

5. Conclusions

This study has proposed a novel boundary-type meshless
method for modeling geofluid flow in heterogeneous geo-
logical media. The numerical solutions of geofluid flow are
approximated by a set of particular solutions of the subsurface
flow equation which are expressed in terms of sources
located outside the domain of the problem. To deal with the
subsurface flow problems of heterogeneous geological media,
the domain decomposition method was adopted. The validity
of the model is established for a number of test problems.
Application examples of subsurface flow problems with free
surface were also carried out. The fundamental concepts and
the construct of the proposed method are addressed in detail.
The findings are addressed as follows.

In this study, a pioneering study is based on the col-
location Trefttz method and provides a promising solution
which integrates the T-Trefftz method and F-Trefftz method
for constructing its basis function using one of the negative
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FIGURE 17: The accuracy of the maximum absolute error versus the
number of source points.

particular solutions which satisfies the governing equation
and allows many source points outside the domain of interest.
The proposed method uses the same concept of the source
points in the MFS, but the fundamental solutions can be
replaced by the negative Trefttz functions. It may release
one of the limitations of the MFS in which the fundamental
solutions may be difficult to find.

It is well known that the system of linear equations
obtained from the Trefftz method may also become an ill-
posed system with the higher order of the terms. In this
study, the proposed method integrates the collocation Trefttz
method and the MFS which approximates the numerical
solutions by superpositioning of the negative particular
solutions as basis functions expressed in terms of many
source points. As a result, only two Trefttz terms were adopted
because many source points are allowed for approximating
the solution. Meanwhile, the ill-posedness from adopting the
higher order terms for the solution with only one source
point in the collocation Trefttz method can be mitigated. In
addition, results from the validation examples demonstrate
that the proposed method may obtain better accuracy than
the MES.

The validity of the model is established for a number
of test problems, including the investigation of the basis
function using two possible particular solutions and the com-
parison of the numerical solutions using different particular
solutions and the method of fundamental solutions. Applica-
tion examples of subsurface flow problems with free surface
were also carried out. Numerical results demonstrate that the
proposed method is highly accurate and computationally effi-
cient. This pioneering study demonstrates that the proposed
boundary-type meshless method may be the first successful
attempt for solving the subsurface flow with nonlinear free

Geofluids

surface in layered heterogeneous geological media which
has not been reported in previous studies. Moreover, the
application example depicted that the proposed method can
be easily applied to the three-dimensional problems.
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